

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 1 / 23

_

Table of Contents

18MAT31 : Engineering Mathematics-III	2
A. COURSE INFORMATION	
1. Course Overview	2
2. Course Content	2
3. Course Material	2
4. Course Prerequisites	3
B. OBE PARAMETERS	3
1. Course Outcomes	
2. Course Applications	
3. Articulation Matrix	
4. Mapping Justification	
5. Curricular Gap and Content	_
6. Content Beyond Syllabus	
C. COURSE ASSESSMENT	
1 Course Coverage	
2. Continuous Internal Assessment (CIA)	
D1. TEACHING PLAN - 1	
Module - 1	
Module - 2	
E1. CIA EXAM – 1	_
a. Model Question Paper - 1	
b. Assignment -1	
D2. TEACHING PLAN - 2	
Module - 3	
Module - 4	
E2. CIA EXAM – 2	
a. Model Question Paper - 2	
b. Assignment - 2	
D3. TEACHING PLAN - 3	-
Module - 5	
E3. CIA EXAM – 3	
a. Model Question Paper - 3	
b. Assignment – 3	
F. EXAM PREPARATION	
University Model Question Paper	19 21

Note: Remove "Table of Content" before including in CP Book
Each Course Plan shall be printed and made into a book with cover page
Blooms Level in all sections match with A.2, only if you plan to teach / learn at higher levels

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 2 / 23

18MAT31 : Engineering Mathematics-III

A. COURSE INFORMATION

1. Course Overview

Degree:	BE	Program:	IS\CS\EEE
Year / Semester :	/	Academic Year:	2018-19
Course Title:	Engineering mathematics	Course Code:	18MAT31
Credit / L-T-P:	4/4-0-0	SEE Duration:	180 Minutes
Total Contact Hours:	50	SEE Marks:	80 Marks
CIA Marks:	20	Assignment	3
Course Plan Author:	G Pujitha	Sign	Dt:03-08-2018
Checked By:	Veerabhadraswamy V C	Sign	Dt:

2. Course Content

Mod ule	Module Content	Teachi ng	Module Concepts	Blooms Level
		Hours		
1	Fourier series of 2∏,2l period & half range fourier series, Harmonic analysis.	10	Analyze circuits&system communication	L4
2	Fourier transforms & Fourier inverse transforms	5	Continous signal process	L3
2	Z-transforms and inverse z-transforms	5	Discreate signal process	L3
_	Statistical methods, curve fitting, lines of regression, correlation.	7	Data analyzing	L3
3	Regular falsie& newton Raphson	3	Solution of transcendental equation	L3
	Newton forward & backward divided difference&lagranges	5	interpolation&extrap olation	L3
4	Simpson 1/3 &3/8 &weddles rule	5	Definite integrals	L3
_	Line integrals, Green's, StokeS & Gauss divergent theorem and problems	7	Electro magnetic and fluildflow	L4
	Variational problems, euler's equations,geodesics and problems	3	Maximum and minimum	L4

3. Course Material

Mod	Details	Available
ule		
1	Text books	
	1;.B.S Grewal, higher engineering mathematics	In Lib/dept
	2:Advanced engineering mathematics by ERWIN KREYZIG	In Lib/dept
	3:Advanced engineering mathematics by PETER V. O'NEIL	
2	Reference books	
	1: N.P.BAIL AND MANISH GOYAL:A text book of engineering	In dept
	mathematics,laxmi publishers,7th edition,2010	
	B.V Ramana:Higher engineering mathematics TATA McGRAW-HILL 2006	In Lib
3	Others (Web, Video, Simulation, Notes etc.)	
	VTU EDUSAT PROGRAMME	Available

BS Prepared by

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 3 / 23

4. Course Prerequisites

SNo	Course	Course Name	Module / Topic / Description	Sem	Remarks	Blooms
	Code					Level
1	17MAT21		Module-4/ Evaluate	2	Revision	L4
		maths-2	double & triple integral			

Note: If prerequisites are not taught earlier, GAP in curriculum needs to be addressed. Include in Remarks and implement in B.5.

B. OBE PARAMETERS

1. Course Outcomes

#	COs	Teach. Hours	Concept	Instr Method	Assessmen t Method	Blooms' Level
CO1	Analyze expansion of Fourier series using Euler formula		Analyze circuits&syst em communicat ion	Lecture	Assignment and Slip Test	L4
CO2	Apply to transform form one to another domain by Fourier integrals	5	Continuous signal process		Assignment and Slip Test	L3
CO3	Apply to transform one domain to another domain by z-transforms	5	Discrete signal process	Lecture	Assignment and Slip Test	L3
CO4	Apply to construct numerical data and solving by least square method	7	Data analyzing	Lecture	Assignment and Slip Test	L3
CO ₅	Apply to solve transcendental equations by appropriate numerical method		Solution of transcenden tal equation	Lecture	Assignment and Slip Test	L3
CO6	Apply to construct the relevant table which are present in the formula by using appropriate method		Interpolation &Extrapolati on	Lecture	Assignment and Slip Test	L3
CO7	Apply to evaluate definite integral from a set of table values by Simpson's &Weddell's rule		Definite integrals	Lecture	Assignment and Slip Test	L3
CO8	Analyze the evaluation of double, triple and vector product by green's,stokes gauss divergence theorem		Electro magnetic & fuildflow		Assignment and Slip Test	L4
COg	Analyze how to apply the Euler's equations for a given function by Euler's equation		maximum& minimum	Lecture	Assignment and Slip Test	L4
_		50	_	_	_	
		50	_	_	-	

Note: Identify a max of 2 Concepts per Module. Write 1 CO per concept.

2. Course Applications

SNo	Application Area	CO	Level
1	To study the nature of wave forms in voltage- current characteristics .	CO1	L3
	To study the continuous and Apply to transform one domain to another domain by	CO2	L3
	z-transforms discrete signals and its properties.		

BS

Prepared by Checked by Approved

WSTITUTE OF
3 (00 v 0) (c)
E 2300 0
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
**
ANGAL ON

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 4 / 23

3	Used to convert to discrete time domain signal into discrete frequency domain signal.	CO3	L3
4	Curve fitting is the process of constructing a curve that has the best fit to a series of data points.	C04	L3
5	Is method used for finding simple zeros of non-linear equations.	CO5	L3
6	Is used for the analysis of a rectangular thin plate.	CO6	L3
7	Method is used for finding numerical approximation for definite integrals.	CO7	L3
8	To find the rate of change of the mass of a fluid flow	CO8	L4
9	one way of finding approximations to the lowest energy eigenstate or ground state,	CO9	L4
	and some excited states;		

Note: Write 1 or 2 applications per CO.

3. Articulation Matrix

(CO - PO MAPPING)

_	Course Outcomes							Dutc						
#	COs	PO ₁	PO2	PO3	PO ₄	PO5	РО	P07	PO8	PO9	PO1	PO ₁	PO ₁	Level
							6				0	1	2	
CO1	Analyze expansion of Fourier series using Euler formula	√	√	√						√		√	√	L4
CO2	Apply to transform form one to another domain by Fourier integrals		√	√						√		√	√	L3
CO3	Apply to transform one domain to another domain by z-transforms		√	√						√		√	√	L3
CO4	Apply to construct numerical data and solving by least square method		√	√						√		√	√	L3
CO5	Apply to solve transcendental equations by appropriate numerical method		√	√						√		√	√	L3
CO6	Apply to construct the relevant table which are present in the formula by using appropriate method		√	√						√		√	√	L3
CO7	Apply to evaluate definite integral from a set of table values by Simpson's &Weddell's rule		√	√						√		√	√	L3
CO8	double, triple and vector product by green's,stokes gauss divergence theorem		√	√						√		√	√	L4
CO9	Analyze how to apply the Euler's equations for a given function by Euler's equation		√	√						√		√	√	L4
	Average													

Note: Mention the mapping strength as 1, 2, or 3

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 5 / 23

4. Mapping Justification

Мар	ping	Justification	Mapping Level
СО	РО	-	-
CO1	PO1	Apply the knowledge of Fourier series to find the solution to complex engineering problems.	L3
CO1	PO2	To analyze boundary value problems for linear ODE's	
CO2	PO1	Apply the knowledge of Fourier transforms to find solution to complex engineering problems.	L3
CO2	PO2	To analze time domain and frequency domain in signal processing.	
CO3	PO1	Apply the knowledge of Z-Transforms to find the solution to complex engineering problems.	L3
CO3	PO2	To Analyze digital filters and discrete signal.	
CO ₄	PO1	Apply the knowledge of interpolation in solving complex engineering problems.	L3
CO ₄	PO2	Apply power flow analysis of electrical power system using N-R method.	
CO ₅	PO1	Apply the knowledge of interpolation in solving complex engineering problems.	L3
CO ₅	PO2	Used to analyze different model in computer aided engineering	
CO6	PO1	Apply the knowledge of integration in solving complex engineering problems.	L3
CO6	PO ₂	To analyze static dynamic reaction forces on areas and volumes of solids.	
CO7	PO1	Apply the knowledge of line integral n solving complex engineering problems.	L3
CO7	PO2	To analyze and measure the energy level in water turbines and cyclones	
CO8	PO1	Apply the knowledge of calculus in solving complex engineering problems.	L3
CO8	PO2	To analyze the rotation of a rigid body using a reference frame with its axis fixed to the body.	

Note: Write justification for each CO-PO mapping.

5. Curricular Gap and Content

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					

Note: Write Gap topics from A.4 and add others also.

6. Content Beyond Syllabus

SNo	Gap Topic	Actions Planned	Schedule Planned	Resources Person	PO Mapping
1					
2					
3					
4					
5					
6					
7					

BS

Prepared by Checked by Approved

SKIT	Teaching Prod
Doc Code:	BS-SKIT.Ph5b
Title:	Course Plan
	Doc Code:

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 6 / 23

Copyright	Copyright ©2017. cAAS. All rights reserved.							
8								
9								
10								

Note: Anything not covered above is included here.

C. COURSE ASSESSMENT

1. Course Coverage

Mod	Title	Teaching	eaching No. of question in Exam				CO	Levels		
ule		Hours	CIA-1	CIA-2	CIA-3	Asg	Extra	SEE		
#							Asg			
1	Fourier series	10	2	-	-			2	CO1,	L4
2	Fourier Transforms and Z-	10	2	-	-			2	CO2,	L3
	TRANSFORMS								CO3	
3	Statistical methods , curve fitting	10	-	2	-			2	CO4,	L3,
	and numerical methods.								CO ₅	
4	Finite difference and numerical	10	-	2	-			2	CO6,	L3
	integration								C07	
5	Vector integration and Calculus of	10	_	_	4			2	CO8,	L4
	variations								CO9	
-	Total	50							-	-

Note: Distinct assignment for each student. 1 Assignment per chapter per student. 1 seminar per test per student.

2. Continuous Internal Assessment (CIA)

Evaluation	Weightage in Marks	CO	Levels
CIA Exam – 1	30	CO1, CO2, CO3, CO4	,L3,L4
CIA Exam – 2	30	CO4 ,CO5, CO6, CO7,	L3
CIA Exam – 3	30	C08,CO9,	L4
Assignment - 1	10	CO1, CO2, CO3, CO4	,L3,L4
Assignment - 2	10	CO4 ,CO5, CO6, CO7,	L3
Assignment - 3	10	C08,CO9,	L4
Seminar - 1	-	-	-
Seminar - 2	-	-	-
Seminar - 3	ı	-	-
	-	-	-
Other Activities - define -	-	-	-
Slip test			
Final CIA Marks	40	-	-

Note: Blooms Level in last column shall match with A.2 above.

D1. TEACHING PLAN - 1

Module - 1

Title:	Fourier series	Appr	16 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Analyze expansion of fourier series using eulers formula	CO1	L4

BS

Prepared by Checked by Approved

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 7 / 23

Copyright ©20	17. cAAS. All rights reserved.		
b	Course Schedule	-	
	Module Content Covered	СО	Level
1	Periodic functions, Dirichlet's conditions	C01	L4
2	Fourier series of periodic functions of period 360	CO1	
3	Fourier series of periodic functions of arbitrary period 2c	C01	
4	Fourier series of even and odd functions	C01	
5	Solving numericals	C01	
6	half range cosine Fourier series	C01	
7	half range sine Fourier series	C01	
8	Practical harmonic analysis	C01	
9	Solving numericals	C01	
10	Complex fourier series	C01	
С	Application Areas	СО	Level
1	To study the nature of wave forms in voltage- current characteristics.	CO1	L4
d	Review Questions	-	-
Ok	that $\frac{\pi^2}{8} = \sum_{n=1}^{\infty} \frac{1}{(n-1)^2}$.	CO1	L1
2	 compute the constant term and the first two harmonics in the Fourier series of f(x) given by the following table 0 1 2 3 4 5 1 4 8 15 7 6 2 	CO1	L3
3	If $f(x) = cosx $ expand $f(x)$ as a Fourier series in the interval $(-\pi, \pi)$	CO2	L2
4	Expand the function f(x) =xsinx as a Fourier series series in the interval $-\pi$ $\leq x \leq \pi$	CO2	L4
⁵ Ok	otain the Fourier series of f(x)= $\frac{\pi-x}{2}$ 0 <x<2<math>\pi and Hence deduce that $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$</x<2<math>		
	$\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} \dots \frac{\pi}{4}$	00-	
6	Expand the function f(x) defined by $ \begin{cases} \frac{1}{4} - x : 0 < x < \frac{1}{2} \\ x - \frac{3}{4} : \frac{1}{2} < x < 1 \end{cases} $ in a half range sine series	CO2	L5
е	Experiences	-	_
1		CO1	L2
2			
3			
4		CO3	L3
5			

Module - 2

а	Course Outcomes	_	Blooms
		Time:	
Title:	Fourier transform and z-transforms	Appr	10 Hrs

BS Prepared by

Checked by

Approved

THE TITUTE OF ACT
THE STATE OF THE PERSON OF THE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 8 / 23

Copyright ©20	D17. cAAS. All rights reserved.	1	
-	The student should be able to:	-	Level
1	Apply to transform form one to another domain by fourier intergrals	CO3	L3
2	Apply to transform one domain to another domain by z-transforms	CO4	<u></u>
	Apply to transform one domain to another domains y 2 transforms		
b	Course Schedule	_	_
	o Module Content Covered	СО	Level
17	Infinite fourier transform	CO2	L ₃
18	Fourier sine transform	CO2	L3
10			
19	Fourier cosine transform	CO2	L3
20	Basic definition, Z-transforms definition	CO3	L3
21	Standard Z-transforms, damping rule	CO3	L3
22	Shifiting rule, initial value and final value theorems	CO3	L3
23	Solving numerical	CO3	L3
24	Inverse Z-transform	CO3	L3
25	Numericals	CO3	L3
26	Applications to solve difference equations	CO3	 L3
	, applications to control amorphics equations		
С		СО	Level
1	To study the continuous and Apply to transform one domain to another	CO2	L3
1	domain by z-transforms discrete signals and its properties.		
2	Used to convert to discrete time domain signal into discrete frequency	CO3	L3
	domain signal.		
d	Review Questions	-	-
12	Find the Fourier sine and cosine transforms of $f(x)=e^{-\alpha x}$, where $\alpha > 0$.	CO3	L3
	ind the realist sine and cosine dansterning of I(ii) (, where w o.		
13	Find the Fourier sine and cosine transforms of $f(x)=\chi e^{-ax}$, where a>0	CO4	L3
	2	00-	1 -
14	Find the inverse Fourier transform of e^{-u^2} .	CO2	L3
4.5	1	CO2	Lo
15	find the Fourier cosine transform of $f(x) = \frac{1}{1}$	CO2	L3
	find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$.		
		00-	1 -
16	Find the inverse Fourier sine transform of $\frac{1}{s}e^{-as}$.	CO2	L3
	S		
4.7		000	La
17	Find the inverse Z-transforms of $\frac{Z}{(Z-1)(Z-2)}$.	CO3	L3
	(Z-1)(Z-2)		
		00 -	1 -
18	Solve the difference equation Y_{n+2} +2 Y_{n+1} + Y_n =n with Y_0 = Y_1 =0 using Z	CO3	L3
	transforms.		
10	Colve the difference equation V (6V (6V (6V (6V (6V (6V (6V (6V (6V (CO3	L3
19	Solve the difference equation $y_{n+2}+6y_{n+1}+9y_n=2^n$ with $y_0=y_1=0$ using Z	CO3	∟ე
	transforms.		
е	Experiences	_	_
1	• • • • • • • • • • • • • • • • • • • •	CO1	L2
2			

AMSTITUTE OF THE	SKIT	Teaching Process
KAN DEL	Doc Code:	BS-SKIT.Ph5b1.F02
S ANGALORE T	Title:	Course Plan

Rev No.: 1.0	
Date:03-08-2018	
Page: 9 / 23	

Copyright ©2017. cAAS. All rights reserved.									
3									
4		CO3	L3						
5									

E1. CIA EXAM – 1

a. Model Question Paper - 1

Crs		18MAT31 Sem: III Marks: 30 Time: 75	minute	es	
Code					
Cour		Engineering maths-3	Maulia		1
1			Marks	CO -1	Level
1	a	Obtain the Fourier series for $f(x) = \pi - x $ in the interval $(-\pi, \pi)$	5	CO-1	L4
	b	find the Sine half range Fourier series of $f(x)$ If $f(x) = i \begin{cases} -k & \text{if } -2 < x < 0 \\ k & \text{if } 0 < x < 2 \end{cases}$	5	CO-1	L4
	С	Obtain the Fourier series for y upto first harmonic	5	CO1	L4
		θ 0 60 120 180 240 300 360			
		y 0 9.2 14.4 17.8 17.3 11.7 05			
		OR			
2	а	Find the Fourier sine and cosine transforms of $f(x)=e^{-\alpha x}$, where $\alpha>0$.	5	CO2	L3
	b	Find the Fourier sine and cosine transforms of $f(x)=\chi e^{-ax}$, where a>0	5	CO2	L3
	С	Find the inverse Fourier transform of e^{-u^2} .	5	CO2	L3
		MODULE-2(15 marks)			
3	а	Expand the function $f(x)$ = xCOSX Fourier series in the interval $0 \le x \le 2\pi$ $0 \le x \le \pi$	5	CO1	L4
		Solve the difference equation Y_{n+2} +2 Y_{n+1} + Y_n = n with Y_0 = Y_1 = 0 using Z transforms.	5	CO3	L3
	С	Find the Fourier series for $f(x) = -\pi $ for $-\pi < x < 0$, $ \land f(x) = x $ for $ 0 < x < \pi $ Deduce that $ \frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{8} $	5	CO1	L4
		OR			
4	а		5	CO1	L4
	b	Find $a_{0,}a_{1},a_{2}$ in the half range Fourier cosine series of y using the following table	5	CO1	L4
		X 0 1 2 3 4 5			

AMS	TITUTE OF	SKIT Teaching Process								Rev 1	Rev No.: 1.0			
Doc Code: BS-SKIT.Ph5b1.F02									Date:03-08-2018					
18 4 04	Title: Course Plan									Page: 10 / 23		3		
Copyrig	ht ©201	7. cAAS. All ri	ghts reser	ved.										
			У	8	6	4	7	9	11					
	С	Expand	the fu	nction	f(x)=x	sinx as	a Fou	rier	series i	n the intervo	at $0 \le x \le 2\pi$	5	CO1	L4
		$0 \le x \le \pi$	[

b. Assignment -1

Note: A distinct assignment to be assigned to each student.

		Model Assignment Questions			
Crs C	ode: 18MA		90 – 120	minute	 S
Cours		Maths-3			
		ent to answer 2-3 assignments. Each assignment carries equal ma	ark.		
SNo	USN	Assignment Description	Marks	СО	Level
1		Obtain the half range Fourier sine series for the function $\begin{cases} \frac{1}{4} - x : 0 < x < \frac{1}{2} \\ x - \frac{3}{4} : \frac{1}{2} < x < 1 \end{cases}$	5	CO1	L4
2		Compute the constant term and the first two harmonics in the Fourier series of f(x) given by the following table X : 0 1 2 3 4 5 f(x) : 4 8 15 7 6 2	5	CO1	L4
3		Find the Fourier series for the function f(x)=x(2\pi-x) over the interval (0 , 2\pi) and hence deduce that $\frac{\pi^2}{12} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$		CO1	L4
4		Expand the function f(x) =x- χ^2 in the interval - π < x < π . Deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$	5	CO1	L4
5	Find	the half range cosine series for the function f(x)= $(x-1)^2$ in 0 < x < 1.		CO1	L4
6		Obtain the half range cosine series for the function f(x)=sinx in $0 \le x \le \pi$)	CO1	L4
7		ain the Fourier series of f(x)= $\frac{\pi-x}{2}$ 0 <x<2<math>\pi and Hence deduce that $\frac{1}{1}-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}$ $\frac{\pi}{4}$.</x<2<math>		CO1	L4
8		the Fourier cosine transform of $f(x)=e^{-ax}$, $a\ge 0$, hence find $\int_0^\infty \frac{\cos \alpha x}{a^2+\alpha^2} dx.$		CO2	L3
9	Find	the Fourier transform of $f(x)=e^{-a x }$, where a>0.		CO2	L3
10		the inverse Fourier transform of $\frac{s}{1+s^2}$.		CO2	L3
11		the Fourier sine and cosine transforms of f(x) $\begin{cases} x, 0 < x < 2 \\ 0, elsewhere \end{cases}$		CO2	L3
12	Find	the Z-transforms of i) $(2n-1)^2$ ii) $\cos(\frac{n\pi}{2} + \frac{\pi}{4})$		CO3	L3

AMSTIT	UTE OF TE	SKI	ΙΤ	Teaching Process	Rev	Rev No.: 1.0			
KRISHI	Doc C		Code:	BS-SKIT.Ph5b1.F02	Dat	Date:03-08-2018			
A ANGALORE *		Titl	le:	Pag	Page: 11 / 23				
Copyright	t ©2017. cA	AAS. All rights	s reserved.						
13		Find	the Z-	transforms of i) $(n+1)^2$ ii) 5m(3n+5)		CO3	L3		
11		·	1 11			COa	La		

Copyright	t ©2017. cAAS. All rights reserved.		
13	Find the Z-transforms of i) $(n+1)^2$ ii) 5m(3n+5)	CO3	L3
14	Find the response of the system y_{n+2} -5 y_{n+1} +6 y_n =u with y_0 =	CO3	L3
	0 , y_1 =1 and u_n = 1 for n=0,1,2,3,by Z transform method .		
15	Find the Z-transforms of $ (n+1)^2 $ ii) $ (n+1)^2 $ iii) $ (n+1)^2 $	CO3	L3
16	Find the inverse Z-transforms of $\dfrac{Z}{(Z-1)(Z-2)}$.	CO3	L3
17	Prove that i) $Z(\cos n\theta) = \frac{Z(Z - \cos \theta)}{Z^2 - 2Z\cos \theta + 1}$; ii) $Z(\sin n\theta) =$	CO3	L3
	$Z \sin \theta$		
	$Z^2 - 2Z\cos\theta + 1$		
18	Find the Z-transforms of $i) n^2 ii) n e^{-an}$.	CO3	L3
19	Solve the difference equation u_{n+2} -5 u_{n+1} +6 u_n =2 with u_0 =3, u_1 =7 using Z transforms.	CO2	L3
20	Obtain the inverse Z-transforms of $\frac{3Z^2+2Z}{(5Z-1)(5Z+2)}$	CO3	L3
21	Find $Z(e^{-an}sinn\theta)$ and $Z(ncosn\theta)$.	CO2	L3
22	Solve the difference equation y_{n+2} +6 y_{n+1} +9 y_n =2n with y_0 = y_1 =0 using Z transforms.	CO2	L3
23	Solve u_{n+2} +2 u_{n+1} + u_n =n with u_0 = u_1 =0	CO2	L3
24	Obtain the inverse Z-transforms of $\frac{4Z^2 - 2Z}{Z^3 - 5Z^2 + 8Z - 4}$	CO2	L3

D2. TEACHING PLAN - 2

Module - 3

	5		
Title:	Statical methods, curve fitting and numerical methods	Appr Time:	16 Hrs
a	Course Outcomes	-	Bloo ms
-	The student should be able to:	-	Level
1	Apply to construct numerical data and solving by least square method	CO ₄	L3
2	Apply to solve transcendental equations by appropriate numerical method	CO5	L3
	Course Schedule		
Clas s No	Module Content Covered	СО	Level
1	Correlation and rank correlation coefficient	CO4	L3
2	Regression and Regression coefficients	CO4	L3
3	lines of regression - problems	CO4	L3
4	Fitting of curves introduction- Fitting equation of straight line.	CO4	L3
5	Fitting equation of parabola.	CO4	L3
6	Fitting equation of exponential curve.	CO4	L3
7	Solving numericals	CO4	L3
8	Regula-falsi method	CO5	L3
9	Secant method	CO5	L3
10	Newton - Raphson method	CO5	L3
	Application Areas	СО	Level
1	Curve fitting is the process of constructing a curve that has the best fit to a series of data points.	C04	L3

MSTITUTEOR
S OO X D PO
E (1) E
() () () () () () () () () ()
ANGALORE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 12 / 23

Copyrigl	nt ©2017. cAAS. All rights reserved.		
2	Is method used for finding simple zeros of non-linear equations.	CO5	L3
d	Review Questions	-	-
1	Fit a curve of the form $y=ae^{bx}$ to the following data:	C04	L3
	x : 77 100 185 239 285		
	V: 24 24 70 111 106		
	y: 2.4 3.4 7.0 11.1 19.6		
2	2. Fit a parabola by using least squares method to the following method to the	C04	L3
	following data :		
	x : 1.0 1.5 2.0 2.5 3.0 3.5 4.0		
	y: 1.1 1.3 1.6 2.0 2.7 3.4 4.1		
	Halanda Barada California de C	COF	La
3	Using the Regula-falsi method, find the root of the equation $xe^x = cosx$ that	CO5	L3
	lies between 0.4 and 0.6 . carry out 4 iterations .		
4	Show that the real root of the equation tanx+tanhx =0 lies between 2 and 3.	CO5	L3
	Then apply the Regula-falsi metod to find the third approximation .		
5	using Regula-falsi method calculate the real root of the following	CO ₅	L3
) 5		005	L3
	equationcorrect to five decimal places $x \log_{10} x = 1.2$		
6	Using the Newton-Raphson method, find the real root of the equation	CO5	L3
	3x = cosx + 1.		
7	Find the third approximate root of $xe^x - 2 = 0$, by Regula-falsi method	CO5	L3
′	a mid the time approximate root of $\lambda y = 2 - 0$, by Regula-Taisi method	200	_5
8	Using the Newton-Raphson method, find the real root of	CO5	L3
	$x \log_{10} x = 1.2$ correct to five decimal places.		
			1
е	Experiences	-	-
1			
2			
3			1
4			
5			

Module - 4

	· ·		
Title:	Finite difference method and Numerical Integration	Appr	16 Hrs
		Time:	
a	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Apply to construct the relevant table which are present in the formula by	CO6	L3
	using appropriate method	i	
2	Apply to evaluate definite integral from a set of table values by Simpson's	CO7	L3
	&Weddell's rule	ı	

BS Prepared by

Checked by

Approved

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 13 / 23

opyright ©201	7. cAAS. All rights reserved.			
b Class Na	Course Schedule		Lavial	
	Module Content Covered	CO	Level	
1	Newton"s forward and backward interpolation formulae	CO6	L3	
2	Solving numericals		L3	
3	Newton"s divided difference formula	CO6	L3	
4	Solving numericals	CO7	L3	
5	Lagrange"s interpolation formula and inverse interpolation formula	CO7	L3	
6	Simpson"s 1/3 rule	CO7	L3	
7	Simpson"s 3/8 rule	CO7	L3	
8	Weddle's rule	CO7	L3	
9	Solving numericals	CO7	L3	
10	Solving numericals	CO7	L3	
С	Application Areas	СО	Level	
1	Is used for the analysis of a rectangular thin plate.	CO6	L3	
2	Method is used for finding numerical approximation for definite integrals.	CO7	L3	
d	Review Questions	-	-	
1 Fro	om the following table estimate the number of students who have obtained the marks between 40 and 45 : Marks : 30-40 40-50 50-60 60-70 70-80 Number of students : 31 42 51 35 31	CO6	L3	
	ing Lagrange's formula , find the interpolating polynomial that approximate the function described by the following table and hence find f(1) and f(4) . X : -1 0 2 3 f(x) : -8 3 1 2	CO6	L3	
3 A (curve is drawn to pass through the points given by the following table: X: 1 1.5 2 2.5 3 3.5 4 Y: 2 2.4 2.7 2.8 3 2.6 2.1 Using weddle's rule, estimate the area bounded by the curve the x-axis and the lines x=1, x=4.	CO6	L3	
4 Us	ing Lagrange's formula , find the interpolating polynomial that approximate the function described by the following table X : 0 1 2 5 f(x) : 2 3 12 147	CO6	L3	
5 Ev	aluate values y= $\log_e x$, 4≤x≤5.2 , in steps of 0.2 and find $\int\limits_4^{5.2} \log_e x \mathrm{d}x$ using simpon's $\frac{3}{8}$ rule .	CO7	L3	
6 Ev	aluate $\int_{0}^{1} \frac{x}{1+x^2} dx$ using weddle's rule taking 7 ordinates and hence find	CO7	L3	
	$\log_e 2$.			
е	log _e 2. Experiences	-	-	
		-	-	

STITUTE
(All All All All All All All All All All
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
1 L 2 000 101
(\$\(\begin{align*} \frac{1}{2}\(\begin{align*} \frac{1}\2\(\begin{align*} \frac{1}{2}\(\begin{align*} \frac{1}{2}\(\begin{align*} \frac{1}{2}\(\begin{align*} \frac{1}{2}\(\begin{align*} \frac{1}{2}\(\begin{align*} \frac{1}2\(\begin{align*} \frac{1}\2\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
10/10/14
BANGER
MGALO

HETITUTE OF THE	SKIT	Teaching Process	Rev No.: 1.0			
	Doc Code:	BS-SKIT.Ph5b1.F02		08-2018		
	Title:	Course Plan		Page: 14 / 23		
Copyright ©2017. c	AAS. All rights reserved					
4						

E2. CIA EXAM – 2

a. Model Question Paper - 2

		Questic								<u> </u>					
		18MAT3			III		Marks:	30)	Ti	me:	75	minute	S	
Cour	se:	Enginee													
-	-	Note: Ar			•			-					Marks	СО	Level
1	а	By using near x=2		meth	nod fin	d a roo	ot of the	e equa	ation X	logz	$x_{10} = 1$.2.lies	20	CO ₅	L3
	b	Fit a cur	ve of	the fo	rm y =	ax+bfo	r the da	ata and	hence	find	y wh	en x=8		CO4	L3
		X	1		2	3	4		5	(6	7]		
		У	87		97	113	12	29	202	:	195	19	3		
	С	The equ	ation (of Reg	ressior	ns lines d	of 2 varia	ables x	and y a	are				CO4	L3
		$y = 0.516$ and \overline{y}	x +33.	73, X :	= 0.512 <u>)</u>	/+32.52.	Find the	e corre	lation o	coeff	icient	and \bar{x}			
		OR				.1.12				C 11	l C. II				
2	а	Find the data											-	CO4	L3
		Х	1	2	3	4	5	6	7		8	9	1		
		У	10	12	16	28	25	36	41		49	40]		
	b	Fit a par	abola	of the	form	$v=at^2+$	bt+c fo	r the c	lata				20	CO4	L3
		t	1	2	2	3	4	5	.	6		7			
		V	2.3	1 2	2.01	3.8	1.66	1	55	1.4	7	1.41			
	С	Find the method				uation	$x^3 - 4x$	+9=0	from	Fals	se -Po	osition		CO5	L3
3	а	Fit the st	raight	: line fo	or follo	wing dat	ta							CO ₄	L3
		x(years		19			.971		1981			1991	1		
		y(produ	uctions	s 8			.0		12			10			
		Also finc	l expe	cted p	roduct	ion in th	e year 2	2001							
	b	Use Sim	pson	s one	third r	ule to fii	$\int_{0}^{2} e^{-}$	dx b	y taken	1 4 e	qual p	arts		CO7	L3
	С	Pressure	e and	volun	ne of t	he gas a	are rela	ted by	the ec	quati	on pv	$y^{\gamma} = k_{\gamma} \gamma$, 20	CO ₄	L3
		and k be	eing c	onstar	nts , fit	this equ	ation]		
		Р	0	.5	1		1.5	2		2	5	3			
		V	1.	62	1		0.75	C	.62	С	.52	0	.46		
		OR													
4	а	Find f(d).1) an	d f(4.9	99) by	using sı	uitable i	nterpo 	lation f	ormı	ula fro	m the		CO6	L3
		Х	0		1		2	3		4		5]		
		У	-8	8	0		20		8	1	20	2:	12		
	b	Evaluate	$=\int_{4}^{5.2}$ lo	og _e xd	x using	y weddle	e s rule	taking	7 ordir	nates	5			CO7	L3
	С	The fol	lowing	tabl	les giv	es mar	ks got	by 10	o stud	ents	in 3'	d sem		CO6	L3
		1		_											

WSTITUTE OF
2 00 ~ D /G
E (12 00) E
(\$ (\$ \$)(\$)
* BANGALORE*

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 15 / 23

	Mathematics	. How many s	tudents got r	nore than 45 r	marks.			
	Х	30-40	40-50	50-60	60-70	70-8	Во	
	У	25	35	22	7	11		

b. Assignment – 2

Note: A distinct assignment to be assigned to each student.

Note:	A ais	tinct assig	gnment		ed to each st						
					odel Assignm			1			
Crs C		18MAT3:			Marks:	5 / 10	Time	: 9	0 – 120	minutes	S
Cours				hematics-III							
			to answe		ments. Each			qual ma			
SNo	Ī	USN			Assignment D				Marks	СО	Level
1		Usi			ula , find the				t 5	CO6	L3
		approximate the function described by the following table :					:able :				
				X :	0	1		2			
				f(x) :	3	6		11			
				Hence	e find f(0.5) a	nd f(3.1).					
2			5.2						5	CO9	L3
		Eva	luate ($\log_a x dx us$	sing weddle's	rule takin	g 7 ordinate	es.			
			4	O _c	-						
3		Us	ina New	ton's divide	d difference f	ormula . fii	nd f(a) aive	n :		CO10	L3
		•			G. G G. G. 100 .		, 9			0010	_5
				V .				144	4		
				X : f(x) :	5	7		11			
		T I	040		150	39		1452		666	1.0
4		Ine	1	a circle (A)	correspondir	ig to diam	ieter (D) is (jiven	5	CO6	L3
			below :								
									_		
			D	: 80		8,		90			
			A	5026			674	6362	2		
					sponding to d		05 using an				
			appropr	riate interpo	lation formula	Э.					
5			A rod is	rotating in a	plane . The f	following t	able gives t	the		co6	L3
) through whi	ch the rod	has turned	d for			
			various	values of 't'	(in seconds)						
				t	0	0.2	0.4	0.6	5		
				θ	0	0.12	0.49	1.1			
			Calcula	te the angul	ar velocity a	nd angular		on of			
			the rod	at t=0.4 seco	ond .						
6				ີ	C).3				CO7	L3
-		usir	g simpo	on's (S)th rul	le, Evaluate	$\int \sqrt{1-8x}$	^{3}dx by tak	ing 7			
				O	•	0	•	<u> </u>			
			ordinate	es.							
7		l Jci	na New/t	ton's divided	d difference fo	ormula fin	ıd f(4) aiver	n :		CO6	L3
'		331		X :	0	2	· · ¬, 9 · · · · ·	3	1		
				f(x) :	-4	2		14	1		
\Box											

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 16 / 23

All rights reserve CO7 Evaluate $\int_{0}^{1} \frac{x}{1+x^2} dx$ by using simpon's $(\frac{3}{8})^{th}$ rule, dividing L3 the interval into 3 equal parts. Hence find an approximate value of $\log_e \sqrt{2}$. Under the suitable assumptions find the missing terms in the CO6 L3 9 following table : -0.2 0.0 0.2 0.4 F(x) 2.6 4.2 3.4 By dividing the range into 6 equal parts, find the approximate CO7 L3 10 value of $\int\limits_{-\infty}^{\infty}e^{\sin x}dx$ using simpon's $(\frac{1}{3})^{rd}$ rule. Evaluate $\int_{0}^{1} \frac{dx}{1+x^2}$ using simpon's $(\frac{3}{8})^{th}$ rule, taking CO7 11 L3 ordinates.Hence find the approximate value of π . Construct an interpolating polynomial for the data given below CO6 L3 12 Using newton's divided formula: 2 4 10 96 196 350 The population of a town is given by the table: CO6 13 L3 year 1951 1961 1971 Population in 19.96 58.81 39.65 thousand Using newton's forward and backword formula, calculate the increase in population from the year 1955 to 1985. Given: CO6 14 L3 3 2 2.5 2.3 Evaluate $\int y dx$ using weddle's rule. CO6 Given L₃ 15 -4 Find y(4) by Newton's divided difference formula CO7 16 L3 $sinx - loax + e^x$)dx using weddle's rule taking 7 Evaluate ordinates. CO7 L3 17 Use Simpson's $(\frac{3}{8})^{th}$ rule to obtain the approximate value of the integral

TITUTE
CHO!
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
E (200) 2
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
* *
* & SE *

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 17 / 23

Copyright	t ©2017. cAAS. All rights	reserved.		
		$\begin{vmatrix} 1-8x \\ \left(\left 3 \right ^{\frac{1}{2}} \\ 0.3 \end{vmatrix}$ dx by considering 3 equal intervals		
18		luate $\int_{0}^{1} \frac{dx}{1+x}$ by using simpon's $(\frac{3}{8})^{th}$ rule, taking 7 ordinates. Hence find the value of $\log_{e}2$.	CO7	L3

D3. TEACHING PLAN - 3

Module - 5

Title.	Vootor into quation and polarity and vortice	A 10 10 11	461140
Title:	Vector integration and calculus of vartion	Appr Time:	16 Hrs
а	Course Outcomes	-	Blooms
-	The student should be able to:	-	Level
1	Analyze the evaluation of double&triple,&vector product by green's,stokes gauss divergence theorem	CO8	L4
2	Analyze how to apply the Euler's equations for a given function by Euler's equation	CO9	L4
b	Course Schedule		_
	Module Content Covered	СО	Level
1	Line integrals - definition and problems	CO8	L4
2	surface and volume Integrals definition, Green"s theorem in a plane	CO8	L4
3	Stoke's theorem	CO8	L4
4	Gauss divergence theorem	CO8	L4
5	Solving numericals	CO8	L4
6	Variation of function and Functional	CO9	L4
7	Variational problems, Euler"s equation	CO9	L4
8	Geodesic	COg	L4
9	Minimal surface of revolution	CO9	L4
10	Hanging chain	CO9	L4
С	Application Areas	СО	Level
1	To find the rate of change of the mass of a fluid flow	CO8	L4
2	one way of finding approximations to the lowest energy eigenstate or ground state, and some excited states;	CO9	L4
d	Review Questions	_	_
1	Using Green's Theorem evaluate $\oint_c (y - \sin x \dot{c}) dx + \cos x dy \dot{c}$ where c is the	CO8	L4
	plane triangle enclosed by the lines $y = 0$, $x = \pi/2$, $y = \frac{2x}{\pi}$		
2	Verify Stoke s theorem for $F = (2x - y)i - (yz^2)j - y^2z$ kover the surface of	CO8	L4
	$x^2 + y^2 + z^2 = 1$ bounded by its projection on the xy-plane		
3	Solve the Variation problem $\delta \int_{\Box}^{\Box} x^2 y^{2} + 2 y(x+y) dx = 0$ Given $y(1) = y(2) = 0$	CO9	L4
4	If $\vec{f} = 3 \text{ xyi} - \text{yj} + 2 \text{ xzkevaluate}$ $\int f \cdot d\mathbf{r}$ where C is the curve	CO9	L4

STITUTE
The state of the s
(\$/<00 x \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
(E) (-200) 2
(a)(a)
* * * * *
MAGALORE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 18 / 23

Copyright ©20:	17. cAAS. All rights reserved.		
	represented by $x=t$, $y=t^2$, $z=t^3$ $-1 < t < 1$		
5	State and prove Euler's equation.	CO9	L4
6	Prove that shortest distance between two points in a plane is a straight line.	CO9	L4
е	Experiences	-	-
1		CO10	L2
2			
3			
4		CO9	L3

E3. CIA EXAM – 3

a. Model Question Paper - 3

Crs (Code	CS501PC Sem: I Marks: 30 Time: 75	minute	es	
Cour	se:	Design and Analysis of Algorithms			
-	-	Note: Answer any 2 questions, each carry equal marks.	Marks		Level
1		Using Green's Theorem evaluate $\oint_c (y - \sin x \dot{c}) dx + \cos x dy \dot{c}$ where c is the	5	CO-8	L-4
		plane triangle enclosed by the lines $y = 0$, $x = \pi/2$, $y = \frac{2x}{\pi}$			
	b	Verify Stoke s theorem for $F = (2x - y)i - (yz^2)j - y^2z$ kover the surface of $x^2 + y^2 + z^2 = 1$ bounded by its projection on the xy-plane	f5	CO-8	L-4
	С	Solve the Variation problem $\delta \int_{\Box}^{\Box} x^2 y^{2} + 2 y(x+y) dx = 0$ Given y(1)= y(2)=0	5	CO-9	L-4
2	а	Verify stokes theorem F= yi+zj+xk where S is upper half of the sphere χ^2 + y^2 + z^2 =1	7	CO10	L2
	b	Evaluate $\iint f \cdot nds$ given f = xi +yj+zk over the sphere $x^2 + y^2 + z^2 = a^2$	8		L3
3	а	If $\vec{f} = 3 \text{ xyi} - \text{yj+2 xzkevaluate}$ represented by $x = t$, $y = t^2$, $z = t^3$ $-1 < t < 1$ where C is the curve	5	CO8	L4
	b	State and prove Euler's equation.	5	CO9	L4
	С	Prove that shortest distance between two points in a plane is a straight line.	5	CO9	L4
4	а	Verify gauss theorems F= yi+zj+xk where S is upper half of the sphere χ^2 + y^2 + z^2 =1	7	CO8	L4
	b	Find the plane curve of length I having the points (x1,y1) and (x2,y2) such that area under the curve between x= x1 and x=x2 is maximum	8	CO9	L4

b. Assignment – 3

Note: A distinct assignment to be assigned to each student.

	Model Assignment Questions								
Crs Code: 18MAT31 Sem: III Marks: 5 5 / 10 Time: 90 - 120 minutes				5					
Course:									
Note: Each	Note: Each student to answer 2-3 assignments. Each assignment carries equal mark.								
SNo	JSN	Assignment Description			Marks	CO	Level		

BS Prepared by

Checked by

Approved

THE TITUTE OF A PLOT
THE STATE OF THE PERSON NAMED IN COLUMN TO SERVICE OF THE PERSON NAMED IN COLU
MAGALORE

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 19 / 23

Copyrigh	t ©2017. cAAS. All rights reserved.			
1	Using Green s Theorem evaluate $\oint_{c} (y - \sin x \dot{c}) dx + \cos x dy \dot{c}$	5	CO8	L4
	where c is the plane triangle enclosed by the lines			
	$y=0, x=\pi/2, y=\frac{2x}{\pi}$			
2	Verify Stoke s theorem for $F = (2x - y)i - (yz^2)j - y^2z$ kover the surface	5	CO8	L4
	of $x^2 + y^2 + z^2 = 1$ bounded by its projection on the xy-plane			
3	Solve the Variation problem $\delta \int_{\Box}^{\Box} x^2 y^{2_1} + 2 y(x+y) dx = 0$ Given $y(1) = y(2) = 0$		CO9	L4
4	If $\vec{f} = 3 \text{ xyi} - \text{yj} + 2 \text{ xzkevaluate}$ $\int f \cdot d\mathbf{r}$ where C is the	5	CO9	L4
	curve represented by x=t, y= t^2 , z= t^3 -1< t<1			
5	State and prove Euler's equation.		CO9	L4
6	Prove that shortest distance between two points in a plane is a straightline.		CO9	
7	Verify gauss theorems F= yi+zj+xk where S is upper half of the sphere $x^2+y^2+z^2=1$		CO8	L4
8	Find the plane curve of length I having the points (x1,y1) and (x2,y2) such that area under the curve between x= x1 and x=x2 is maximum		CO9	L4

F. EXAM PREPARATION

1. University Model Question Paper

Cour	Course: Engg.Maths-III Month /					′ Year	May /	2018						
Crs (Code:		18MAT31 Sem: III Marks: 100 Time:							180 m	inutes			
-		Answer										Marks	CO	Level
1	a	Obtain t	Obtain the Fourier series for $f(x) = \pi - x $ in the interval $(-\pi, \pi)$						6	CO1	L4			
	b	find the Sine half range Fourier series of $f(x)$ If $f(x) = i \begin{cases} -k & \text{if } -2 < x < 0 \\ k & \text{if } 0 < x < 2 \end{cases}$						7	CO1	L4				
	С	Obtain t	he Foui	rier serie	es for y	upto firs	st harm	onic				7	CO1	L4
			θ	0	60	120	180	240	300	360				
			У	0	9.2	14.4	17.8	17.3	11.7	05				
					•	С	R							
-	а	For	urier se) 12	ries of 3 4	f(x) give 5	term a n by the				rmonics	in the	6	CO1	L4
						a Fourie	r series	in the i	nterval	.(-π ,π)		7	CO1	L4
		If f(x) = $ cosx $ expand f(x) as a Fourier series in the interval (- π , π) Find the half range cosine series for the function f(x)= $(x-1)^2$ in $0 < x < 1$.						7	CO1	L4				
2	а	Find the fourier sine and cosine transforms of $f(x) = \begin{cases} x, 0 < x < 2 \\ 0, elsewhere \end{cases}$					6	C02	L3					
	Find $Z(e^{-an}sinn\theta)$ and $Z(ncosn\theta)$.							7	CO3					
		ve the transfor		nce ec	luation	<i>y</i> _{n+2} +62	y _{n+1} +9.	<i>y</i> _n =2n	with y	' ₀ = <i>y</i> ₁ =0	using Z	7	CO3	

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 20 / 23

Copyright ©2017. cAAS. All rights reserved 6 CO₃ L3 Find the inverse Z-transforms of 7 CO₂ L3 Find the Fourier cosine transform of $f(x)=e^{-ax}$, $a\ge 0$, hence find $\int_{0}^{\infty} \frac{\cos \alpha x}{a^2+\alpha^2} dx$. Find the Fourier transform of $f(x)=e^{-a|x|}$, where a>0. CO2 7 L3 By using N-R method find a root of the equation $x \log x_{10} = 1.2$ lies near 6 CO5 L3 3 Fit a curve of the form y = ax + b for the data and hence find y when x=8 CO₄ 7 L3 6 202 У 195 The equation of Regressions lines of 2 variables x and y are CO₄ 7 L3 y = 0.516x +33.73, x = 0.512y+32.52. Find the correlation coefficient and \overline{x} and \overline{y} Find the third approximate root of $xe^x - 2 = 0$, by Regula-falsi method 6 CO5 L3 Pressure and volume of the gas are related by the equation $pv^{\gamma}=k_{\perp}y$ CO₄ L3 7 and k being constants , fit this equation 0.5 0.62 0.46 1.62 0.75 0.52 Find the coefficient of correlation and Regression lines for the following CO₄ L3 6 8 1 2 3 9 10 12 16 28 25 49 40 CO6 The population of a town is given by the table: 6 4 1961 1951 1971 Population in 19.96 39.65 58.81 thousand Using newton's forward and backword formula, calculate the increase in population from the year 1955 to 1985. Given: 7 CO7 4 3 2.5 Evaluate $\int y dx$ using weddle's rule. CO6 Given 7 F(x) : -4 Find y(4) by Newton's divided difference formula By dividing the range into 6 equal parts, find the approximate value of CO7 $\int_{0}^{\infty} e^{\sin x} dx \text{ using simpon's } (\frac{1}{3})^{\text{rd}} \text{ rule.}$

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 21 / 23

Copyrig	ht ©2017.	cAAS. All rights reserved.			
	b Eva	7	CO7		
	b.1-:	approximate value of π.		000	
	USI	ng Lagrange's formula , find the interpolating polynomial that approximate the function described by the following table :	7	CO6	
		X : 0 1 2 3			
		f(x): 3 6 11 1	3		
		Hence find f(0.5) and f(3.1).			
5	а	Using Green's Theorem evaluate $\oint (y - \sin x \dot{c}) dx + \cos x dy \dot{c}$ where c is the	6	CO8	L4
		plane triangle enclosed by the lines $y=0$, $x=\pi/2$, $y=\frac{2x}{\pi}$			
	b	Prove that shortest distance between two points in a plane is a straight line.	7	CO9	L4
to	ke & t	heorem for $F = (2x - y)i - (yz^2)j - y^2z$ kover the surface of $x^2 + y^2 + z^2 = 1$	7	CO8	L4
		bounded by its projection on the xy-plane			
		OR			
	a	If $\vec{f} = 3 \text{ xyi} - \text{yj} + 2 \text{ xzkevaluate}$ $\int f \cdot d\mathbf{r}$ where C is the curve	6	CO8	L4
		represented by $x=t$, $y=t^2$, $z=t^3$ $-1 < t < 1$			
	b	State and prove Euler's equation.	7	CO9	L4
	С	Solve the Variation problem $\delta \int_{0}^{1} x^2 y^{2} + 2 y(x+y) dx = 0$ Given y(1)= y(2)=0	7	Cog	L4

2. SEE Important Questions

Cour	se:	Engg-MathsIII Mont	h / Year	May /	2018
Crs C	Code:	18MAT31 Sem: 3 Marks: 100 Time	:	180 mi	nutes
	Note	Answer all FIVE full questions. All questions carry equal marks.	-	-	
Mo dul e	Qno.	Important Question	Marks	со	Year
1	1 Obta	ain the Fourier series of $f(x) = \frac{\pi - x}{2}$ 0 <x<2<math>\pi and Hence deduce that $\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} \dots \frac{\pi}{4}$</x<2<math>	20	CO1	2008
	Find the Fourier series for the function f(x)=x(2π-x) over the interval (0, 2π) and hence deduce that $\frac{\pi^2}{12} = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$				2010
	3	$f(x) = cosx $ expand $f(x)$ as a Fourier series in the interval $(-\pi, \pi)$.		CO1	2011
	4 Expand the function $f(x) = x - x^2$ in the interval $-\pi < x < \pi$. Deduce that $\frac{\pi^2}{12} = \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$				2007
2	₽ind	the Fourier transform of f(x)= $e^{-a x }$, where a>0.	20	CO2	2005
	2 Find	the inverse Fourier transform of $\frac{s}{1+s^2}$.		CO2	2005

SKIT	Teaching Process	Rev No.: 1.0
Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
Title:	Course Plan	Page: 22 / 23

Find the Fourier sine and cosine transforms of $f(x) = \begin{cases} x, 0 < x < 0 \\ 0, elsewhere \end{cases}$ CO2 2009 CO3 Find the inverse Z-transforms of $\frac{Z^3 - 20 Z}{(Z-2)^3 (Z-4)}$ 2009 CO3 2009 Solve the difference equation y_{n+2} +6 y_{n+1} +9 y_n =2 $^{\rm n}$ with y_0 = y_1 =0 using Z Fit a curve of the form $y=ae^{bx}$ to the following data: CO₄ 20 2011 3 x: 77 100 185 239 285 y: 2.4 7.0 3.4 11.1 19.6 Using method of least square, fit a curve y=axb for the folling dat CO₄ 2010 2 3 4 9 1¢. 11 8 05 2 45 Fit a Linear law P=mW+C using data CO₄ 2011 Find the best values of a and b by fitting the law V=atb using method of CO4 2011 least squares for the data 24. 35 25. 40 27. 60 32. Fit a 2nd degree polynomial of the form y=a+bx+cx² for the data: CO4 2011 0 2 3 1

4

From the following table estimate the number of students who have

CO6

ĺ	SKIT	Teaching Process	Rev No.: 1.0
	Doc Code:	BS-SKIT.Ph5b1.F02	Date:03-08-2018
	Title:	Course Plan	Page: 23 / 23

obtained the marks between 40 and 45: : 30-40 40-50 50-60 60-70 Marks 70-80 Number of students: 42 51 35 31 CO6 Using Lagrange's formula, find the interpolating polynomial that 2011 approximate the function described by the following table X 1 f(x): 2 3 12 Tabulate the values $y=\log_e x$, $4 \le x \le 5.2$, in steps of 0.2 and CO6 2011 find $\int_{0}^{5.2} \log_e x \, dx$ using simpon's $\frac{3}{8}$ rule. Evaluate $\int_{0}^{1} \frac{x}{1+x^{2}} dx$ by using simpon's $(\frac{3}{8})^{th}$ rule, dividing the CO6 2009 interval into 3 equal parts. Hence find an approximate value of $\log_e \sqrt{2}$. CO6 2010 Use Newton's divided difference formula to find f(8) given 4 5 10 x: 48 100 294 900 f(x): 5 $\oint (y - \sin x \dot{c}) dx + \cos x dy \dot{c}$ CO8 2014 Theorem evaluate Using where c is the plane triangle enclosed by the lines $y=0, x=\pi/2, y=\frac{2x}{2}$ Verify Stoke s theorem for $F = (2x - y)i - (yz^2)j - y^2z$ kover the CO8 2012 surface of $x^2 + y^2 + z^2 = 1$ bounded by its projection on the xyplane Solve the Variation problem $\delta \int_{\Box}^{\Box} x^2 y^{2} + 2 y(x+y) dx = 0$ Given y(1)= y(2)=0 CO9 2017 CO8 2016 $\int f \, d\mathbf{r}$ where C is the curve If $\vec{f} = 3 \text{ xyi} - \text{yj} + 2 \text{ xzk}$ evaluate represented by x=t, $y=t^2$, $z=t^3$ State and prove Euler's equation. 2015 CO9